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Orientational discrete breathers in hydrogen-bonded chains
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We consider rotational motion of protons within a hydrogen-bonded zig-zag chain. Each proton is subjected
to a Coulomb interaction from the three nearest heavy ions, as well as from the two neighboring protons. The
hydrogen bonding is modeled with an additional double-minimum on-site potential. The system admits discrete
breather solutions in the gap below the phonon band. The numerically exact procedure using an anticontinuum
limit is exploited to obtain these solutions, which appear to be asymmetric due to the asymmetry of the
interaction potential. Only single-well orbits are considered. A linear stability analysis is performed. The
discrete breather solutions are shown to be linearly stable provided the nonresonance condition is satisfied, and
they turn out to be unstable in the region of 2:3 parametric resonance. Phonon-breather solutions are found in
the 1:2 resonance region. Two kinds of two-site breather solutions are investigated.
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I. INTRODUCTION

Discrete breathers or time-periodic intrinsically localiz
modes in translationally invariant lattices of nonline
coupled oscillators were discovered as early as in 1970
Ovchinnikov@1#. However, they gained much attention fro
the physics community after their rediscovery by Siev
et al. in 1988@2,3#, when the phenomenon was realized to
of great generality in lattices. Intrinsic localized modes c
be found in any weakly coupled discrete nonlinear syst
~see Ref.@4# for a review! provided nonresonance conditio
is satisfied. Both discreteness and nonlinearity are equ
important. Discreteness gives bounded character of pho
spectrum, while nonlinearity is responsible for frequency
pendence of vibration amplitudes. The existence of disc
breathers as time-periodic solutions of nonlinear lattice eq
tions under quite general conditions is proven by rigoro
theorems@5,6#, and numerical schemes for their explicit ca
culation are developed@7#. Recently, discrete breathers we
experimentally observed in coupled optical waveguid
@8,9#, in charge-density wave systems@10#, in magnetic sys-
tems@11#, in arrays of coupled Josephson junctions@12,13#,
and possibly in myoglobin@14#. Hydrogen-bonded system
such as ice, quasi-one-dimensional hydrogen-bonded c
tals, and one-dimensional hydrogen-bonded chains~see Ref.
@15# for a review! represent another type of condensed ma
systems in which discrete breathers could possibly exist
could be detected experimentally.

A hydrogen-bonded chain can be considered as a zig
network of heavy ions intermediated with protons, each
the protons being linked to one of its neighbor heavy io
with a ~shorter! covalent bond, and to another neighb
heavy ion with a~longer! hydrogen bond. Ground state o
such a system is usually doubly degenerate with respec
the left or right covalent bond. A transition between the
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two ground states can be realized by means of ionic~also
hopping! or orientational~also bonding or Bjerrum! defects
@16#. The first one incorporates a proton hopping betwe
two energy minima in intrabond with an interchange of c
valent and hydrogen links, and the second one takes p
through a molecule rotation as a whole with a break a
successive renovation of hydrogen bond.

A number of one- and two-component one-dimensio
models has been introduced to investigate the dynamic
ionic @17–21# and orientational@22–24# or even both@25–
28# of these soliton type excitations, which are believed to
of great importance in the process of proton transfer@15,16#.
However, the discrete breathers in hydrogen-bonded ch
have been studied only for strong hydrogen bonding@29#
with nondegenerate ground state. This case falls into a m
general class of one-dimensional diatomic Fermi-Pasta-U
lattices for which the discrete breather solutions of differe
symmetry can exist@30–38#, in the frequency gap betwee
optical and acoustic phonon bands, as well as above the
tical band.

As to the weakly coupled hydrogen-bonded chains, in
limit of infinite heavy ion masses the properties of the d
crete breather solutions concerned with intrabond proton
tions can be roughly understood with the help of the Kle
Gordon model with double-well potential~see, e.g., Refs
@39,41,42#!, where the discrete breathers can exist in the g
below the phonon band. The discrete breathers concentr
on rotational proton motion are somewhat different from t
previous ones because of another form~namely, periodicity!
of the proton on-site potential and more complicated~non-
harmonic! proton-proton interaction due to a strong chan
in the system geometry upon reorientation of the chain m
ecules. In the present paper we consider the simplest ca
orientational discrete breathers with single-well proton
bits, the effect of on-site potential double-well character a
periodicity being kept for future investigations.

II. MODEL

We consider a network of protons in a two-dimension
zig-zag chain of infinitely massive heavy ions~see Fig. 1!.
©2002 The American Physical Society04-1
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Each proton is coupled to one of the neighbor heavy i
with a covalent bond with its length being fixed atr. Then
the position of thenth proton is determined uniquely by th
angleun measured from the proton equilibrium position
the right from its heavy ion~given with the angleb).

The Hamiltonian function for the protonic subsystem h
a form

H5(
n

H I

2
u̇n

21V~un!1U1~un!1U2~un ,un11!J , ~1!

where the first term gives the kinetic energy of proton, a
I 5mr2 is the proton moment of inertia. To take into accou
the double-well character of the on-site potential model
hydrogen bonding, the second term in Eq.~1! was chosen in
the form

V~un!5K@cos~b1un!2cosa#2, ~2!

where the anglea is defined by the geometry of the heav
ion zig-zag backbone~see Fig. 1!, and the parameterK gives
the barrier height for the on-site potential. The last two ter
in Eq. ~1! describe the Coulomb interaction of thenth proton
with its neighbor heavy ions and protons, respectively,

U1~un!52
q2

4p«0RF 1

A11r222r cos~a2b2un!

1
1

A11r222r cos~a1b1un!
G , ~3!

and

U2~un ,un11!5
q2

4p«0R
$@sina1r sin~b1un11!2r

3sin~b1un!#21@cosa2r cos~b1un11!

2r cos~b1un!#2%21/2, ~4!

FIG. 1. A schematic representation of the system geome
Equilibrium proton positions are shown with open circles. Big fill
circles represent heavy ions~oxygens!.
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whereq is the effective electric charge of the proton in th
chain molecule,R is the distance between neighbor hea
ions ~see Fig. 1!, andr5r /R is the reduced covalent bon
length.

For the numerical simulations we use the parameter
ues given by Kryachko and Sokhan@22# for orientational
defect on ice: r 50.94 Å, 2a5109.5°, R52.76 Å, q
50.6e, and the barrier height for on-site dipole rotatio
UB

(0)57.68 Kcal/mol. Since the parameterr'0.3, we con-
sider the dipole-dipole approximation used in Refs@23,24# to
be inapplicable to our case and therefore retain the gen
form of interaction~3!,~4!.

The parameterK for hydrogen bonding on-site potential
chosen to give the valueUB

(0) per site for simultaneous rota
tion of all hydrogens byun52b. It gives

UB
(0)5K~12cosa!22K~cosb2cosa!2

1
q2

4p«0RF 1

A114r224r cosa
2

2

A11r222r cosa

2
1

A114r2 cos2 b24r cosa cosb

1
1

A11r222r cos~a2b!

1
1

A11r222r cos~a1b!
G . ~5!

ThenK can be found as

K5H UB
(0)2

q2

4p«0RF 1

A114r224r cosa

2
2

A11r222r cosa

2
1

A114r2cos2b24r cosa cosb

1
1

A11r222r cos~a2b!

1
1

A11r222r cos~a1b!
G J Y ~122 cosa2cos2 b

12 cosa cosb!. ~6!

The equilibrium angleb is chosen to minimize the Hamil
tonian ~1! uponun[0,

y.
4-2
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]

]b
@V~b;0!1U1~b;0!1U2~b;0,0!#50. ~7!

The approximate value ofb can be found as

b5a2
$]@V~b;0!1U1~b;0!1U2~b;0,0!#/]b%b5a

$]2@V~b;0!1U1~b;0!1U2~b;0,0!#/]b2%b5a

.

~8!

For our choice of potentials~2!,~3!,~4! we get

$]@V~b;0!1U1~b;0!1U2~b;0,0!#/]b%b5a

5
q2

4p«0R H r~2r21!sin 2a

@124r~12r!cos2 a#3/2

1
r sin 2a

@11r222r cos 2a#3/2J ~9!

and

$]2@V~b;0!1U1~b;0!1U2~b;0,0!#/]b2%b5a

5
2 sin2 a

~12cosa!2 H UB
02

q2

4p«0RF 1

@124r~cosa2r!#1/2

2
2

@11r222r cosa#1/2
2

1

@124r~12r!cos2 a#1/2

1
1

12r
1

1

@11r222r cos 2a#1/2G J
1

q2

4p«0R H 3r2~2r21!2 sin2 2a

@124r~12r!cos2a#5/2

1
2r~2r cos 2a2cos2 a!

@124r~12r!cos2 a#3/2
1

r

~12r!3

2
3r2 sin2 2a

@11r222r cos 2a#5/2
1

r cos 2a

@11r222r cos 2a#3/2J .

~10!

Equation ~8! gives the approximate value of correctiona
2b'0.0294, while the exact difference isa2b
50.023 747. The on-site potentials~2! and~3! for this choice
of b are shown in Fig. 2~a! with the curves 1 and 2, and th
form of the interaction term~4! is presented in Fig. 2~b!.

III. ANTICONTINUUM LIMIT AND PHONON BAND

To obtain numerically@7# the discrete breather solution
using the proof of existence by MacKay and Aubry@5#, we
04660
introduce the anticontinuum limit into the system Ham
tonian. Despite the resemblance of our system to the Kle
Gordon chain, it does not suffice simply to insert a factor
C ~called a coupling constant! into the interaction term~4!
because of the change of the proton equilibrium angleb.
Luckily, an idea of great help suggested for Fermi-Pas
Ulam chain@43# is to insert an additional on-site potential o
the form (12C)U2(un,0) into the system Hamiltonian:

Hm~C!5(
n

H I

2
u̇n

21V~un!1U1~un!1~12C!U2
(0)~un!

1CU2~un ,un11!J . ~11!

But in our case the effective on-site potentialU2
(0)(un) has to

be chosen to compensate the missing energy of interac

FIG. 2. ~a! The potential energy profiles for the different kind
of interaction. 1, hydrogen bonding energyV(un); 2, Coulomb in-
teractionU1(un) with neighboring oxygens; 3, the effective proton
proton interaction potentialU2

(0)(un) for the anticontinuum limit; 4,
V(un)1U1(un); 5, V(un)1U1(un)1U2

(0)(un). ~b! The proton-
proton interaction energyU2(un ,un11). In this work all angles are
measured in radians.
4-3
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with the two@(n21)-th and (n11)-th# neighboring protons
rested at their equilibrium positions. Hence,

U2
(0)~un!5U2~un,0!1U2~0,un!2U2~0,0!

5
q2

4p«0R
†2@sin2a1~cosa22r cosb!2#21/2

1„$sina1r@sinb2sin~b1un!#%2

1$cosa2r@cosb2cos~b1un!#%2
…

21/2

1„$sina2r@sinb2sin~b1un!#%2

1$cosa2r@cosb2cos~b1un!#%2
…

21/2
‡,

~12!

the last term being added to keep the ground-state energ
the system fixed with the change ofC. The form of this
effective on-site potential is represented in Fig. 2~a! by curve
3. The equations of motion to be solved are

I ün1
dV~un!

dun
1

dU1~un!

dun
1~12C!S ]U2~un,0!

]un

1
]U2~0,un!

]un
D1CS ]U2~un ,un11!

]un
1

]U2~un21 ,un!

]un
D

50. ~13!

It is obvious that for a coupling constantC50 with a result-
ing on-site potential given by curve 5 in Fig. 2~a!, we have a
system of decoupled nonlinear oscillators, and forC51 we
get the realistic system~1! with a general interaction term
~4!.

The phonon band of the system can be found from
linearized Hamiltonian

H05I(
n

H 1

2
u̇n

21V0
2
un

2

2
1CV0

2xunun11J , ~14!

with

V0
25

1

I

]2@V~un!1U1~un!1U2
(0)~un!#

]un
2 U

un50

and

x5
1

IV0
2

]2U2~un ,un11!

]un]un11
un5un1150 . ~15!

It is clearly seen that our choice of introducing antico
tinuum limit does not change equilibrium positions of pr
tons. Moreover, the frequency of harmonic vibrationsV0

2

does not depend onC, so we have no problem with intersec
ing the dangerous resonance region when increasingC at
constant value of breather frequency~cf. Refs. @29,34,38#!.
Introducing the dimensionless time variablet5V0t, the lin-
earized equations of motion take the form
04660
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ün1un1Cx~un211un11!50. ~16!

The phonon spectrum can be found with the help of
ansatz: un5A exp@i(vt2kn)#; substituted into Eq.~16! it
gives v25112Cx cosk with the lower and higher band
edges

vmin5A122Cuxu, vmax5A112Cuxu. ~17!

For our original system~1! we haveC51 and

vmin50.852756, vmax51.128187. ~18!

The dependence of the phonon band on the coupling cons
C is shown in Fig. 3~phonon band is labeled with 1:1 reso
nance!. The regions of 1:2 and 1:3 resonance with phon
band are shown with solid lines, and the regions of 2:3 a
2:5 parametric resonance are given by dashed lines. Hig
order resonance regions are not shown. The stable disc
breather solutions are expected to be found in the gap be
the phonon band and above the 2:3 parametric reson
region. All the frequencies below the 1:3 resonance reg
have higher-order harmonics in the phonon spectrum.

IV. NUMERICAL RESULTS

The numerically exact time-reversible discrete breat
solutions considered in this section have been obtained f
the anticontinuum limit with the help of the Newton
Raphson method@7# with periodic boundary conditions im
posed. In the most cases we have used a chain lengthN of
about 25 particles, unless stated otherwise. Since we ar
terested in the discrete breather solutions to the system~1!,
only the results forC51 are reported.

FIG. 3. The dependence of phonon band frequencies on
coupling constantC ~upper two solid lines!. The regions of 1:2 and
1:3 resonance with phonon band are also shown with solid lin
The regions of parametric resonance are given with dashed li
Regions of higher-order resonances in the lower part of the gap
not shown.
4-4
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ORIENTATIONAL DISCRETE BREATHERS IN . . . PHYSICAL REVIEW E65 046604
A. Single-site breather solutions

As mentioned above, discrete breather solutions
proven to exist in weakly coupled systems provided nonre
nance condition is satisfied. The last condition means
none of the higher-order harmonics of the breather freque
vb is allowed to be in resonance with a phonon spectru
Therefore, the frequency regions@vmin /n,vmax/n# with n
51,2,3, . . . , are to beexcluded from considerations.

In the case of our system with the phonon band given
Eq. ~17! the nonresonance condition is satisfied for the f
quency range 0.564 10,vb,0.852 76 (vmax/2,vb,vmin)
and 0.376 06,vb,0.426 38 (vmax/3,vb,vmin/2). How-
ever, for the coupling constantC51 the localized one-site
discrete breather solutions have been found only for the
frequency range.

Figure 4~a! represents the form of discrete breather so
tion for vb50.83, which is close to the lower edge of th
phonon band, from which this solution bifurcates. The s
bility analysis of this solution shows that all the Floqu
eigenvalues lie on the unit circle. The dependence of th
phases on the coupling parameterC is plotted in Fig. 4~b!.

FIG. 4. ~a! Time dependence of the discrete breather solution
vb50.83~just below the lower edge of the phonon band!. ~b! Evo-
lution of Floquet eigenvalues along the unit circle with the incre
of the couplingC.
04660
re
o-
at
cy
.

y
-

st

-

-

ir

Upon decreasing the breather frequencyvb the solution
remains stable down to some frequency for which a collis
of Floquet eigenvalues at21 takes place. The exact value o
collision frequency slightly depends on the system sizeN.
For N525 it is vb50.751 37, and forN→` it approaches
2vmax/350.752 12. Such a collision gives rise to some
stabilities, but does not prevent one from continuation of
breather solution. Figure 5 represents a typical evolution
the Floquet eigenvalues on the unit circle upon increase
the coupling parameterC for the breather frequency just be
low 2vmax/3. Overlapping with complex conjugate image
the band can be observed in the right upper corner of Fig
5 ~only the eigenvalues with positive imaginary part are pl
ted, therefore, it looks like reflection atp). For the frequen-
cies under consideration instabilities appear as a resul
collision of the Floquet eigenvalues of extended mod
These instabilities represent a finite size effect@40# and
shrink with the growth of the chain length. On the oth
hand, a finite chain length is the reason that for most of
frequenciesvb there are no coinciding Floquet eigenvalu
at C51, and the discrete breather solution is stable~as for
the case ofvb50.745 represented at Fig. 5!.

The behavior of Floquet eigenvalues becomes more in
esting after the breather frequency falls below 2/3, when
band passes through21 at C50. In this case the localized
mode starts detaching from the band in the upward direct
and meets its complex conjugate at21, yielding a period-
doubling bifurcation. Then the pair of Floquet eigenvalu
have an excursion apart from21 along a real axis and
comes back to21 at some value ofC. After that the pair of
eigenvalues moves along the unit circle and gives rise
Hopf-like instability when it reaches the leading edge of t
phonon band. Such a behavior is illustrated in Fig. 6~a!–~b!,
where the evolution of Floquet eigenvalues withC for vb
50.62 is shown. Additional small instabilities observed
Fig. 6~b! are due to collision of extended modes.

Evolution of the initial breather profile with the decrea
of vb is presented in Fig. 7. The asymmetry of the single-s
discrete breather initial profile is clearly seen from Fig. 7~a!,
where the central part of the breather is shown. The am
tude of oscillation of the left neighbor to the central partic

r

e

FIG. 5. Evolution of Floquet eigenvalues for a discrete breat
solution from the middle of the gap between two resonance reg
(vb50.745). Note overlapping of two band images atp.
4-5
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JULIA M. KHALACK AND M. J. VELGAKIS PHYSICAL REVIEW E 65 046604
is always higher than the amplitude of oscillation of the rig
neighbor particle. We are not aware of the similar result
the Klein-Gordon chains with interaction of the for
W(un112un). Therefore, we believe that this asymmetry
due to the more general form of interaction potent
U2(un ,un11) used here.

The exponential character of discrete breather solution
calization is proved with Fig. 7~b! ~note a semilogarithmic
scale!. Two localization lengths are clearly seen for the fr
quenciesvb,0.6 because of the tails oscillations at the fr
quency 2vb .

Let us find the localization lengths for oscillations wi
frequencies lvb ( l 51,2,3, . . . ). An ansatz un

( l )

5Al uz l uneil vbt, being substituted into the Eq.~16! with C
51, gives

2 l 2vb
2111x~z l

211z l !50, ~19!

so that

z l5
2~12 l 2vb

2!6A~12 l 2vb
2!224x2

2x
. ~20!

For exponentially localized solutions we have to adoptuz l u
,1 asn→1`. Therefore, for the frequency rangevmax/2
,vb,vmin and forx520.136,0,

FIG. 6. The stability analysis for the discrete breather solut
with vb50.62: the phases~a! and the absolute values~b! of Floquet
eigenvalues as a function of couplingC.
04660
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z15
2~12vb

2!1A~12vb
2!224x2

2x
.0 ~21!

and

z25
4vb

2212A~4vb
221!224x2

2x
,0. ~22!

It is easy to check that atvc5A2/5'0.6325 both localiza-
tion lengths are equal (z152z2), and below this frequency
uz2u.uz1u ~see Fig. 8!. This means that the first Fourier ha
monics decays faster than the second one, and at some
tance from the breather center the oscillations become do
nated with the harmonics with the largest absolute value oz l
@44# ( l 52 for our case!, resulting in antiphase character o
neighbor particle oscillations (z2,0), what was the reason
for plotting absolute valueuun(0)u in Fig. 7~b!. For the fre-
quencies close tovc @vb50.62 in Fig. 7~b!# both localiza-
tion lengths are close to each other, therefore, dominatio
the second harmonics is not very pronounced and can
observed only for long chains. At these frequencies the

n
FIG. 7. ~a! The profiles of the discrete breather solutions at

50 ~solid lines! and t5p/vb ~dashed lines! for three different
frequencies:vb50.57~squares!, vb50.745~circles!, vb50.83~tri-
angles!. ~b! The initial profiles of the discrete breather solutions
semilogarithmic scale for the frequenciesvb50.59 ~solid line!,
vb50.62 ~dashed line!, vb50.745 ~dotted line!, and vb50.83
~dash-dotted line!; N590. The solution withvb50.62 has the leas
localization length, because its frequency is very close to the crit
onevc'0.6325.
4-6
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ORIENTATIONAL DISCRETE BREATHERS IN . . . PHYSICAL REVIEW E65 046604
crete breather solution is mostly localized because of
minimum of overall decay factor max(uz1u,uz2u) ~see Fig. 8!.

Figure 8 shows that for the breather frequencyvb ap-
proachingvmax/2 the absolute valueuz2u→1, and the second
harmonics tends to be delocalized, while the first harmon
oscillations remain localized withz1'0.2. As a result, upon
decreasing the frequency below the value ofvmax/2 the dis-
crete breather solution evolves into the phonon-breather
lution with the central part oscillating at the frequencyvb ,
and the rest of the chain performing nondecaying 2vb out-
of-phase oscillations~see Fig. 9!.

Phononbreather solution is unstable because of the H
like instability from collision of localized mode with the
phonon band@cf. Figs. 6~a!, 6~b!#, but the main instability at
C51 comes from the 1:2 resonance with the phonon ba
The appearance of the last instability can be observed in
right lower corner of Fig. 9~b! as a collision of the Floque
eigenvalues corresponding to the extended modes with
time shift mode eigenvalue at11. An energy of the phonon
breather solution diverges linearly with a system sizeN:
Eph-b(N)5Eb

01kN. An out-of-phase character of phono
oscillations leads to a dependence of a breather partEb

0 on
the parity of the system sizeN. For example, for the case o
vb50.55 we haveEph2b

odd (N)50.488 919 410.126 199 6N
for odd N, and Eph2b

even (N)50.545 480 510.126 199 6N for
evenN.

The amplitudes of the central particle displacements
the values of the breather energy for the whole freque
range ~including obtained phononbreather solutions! are
summarized in Figs. 10~a!, 10~b!. It is clearly seen that the
discrete breather solution originates from the lower edge
the phonon band.

The single-site discrete breather solutions with the f
quency from the lower allowed range (vmax/3,v
,vmin/2) could not be continued up to the value of t
coupling constantC51. The reason is most probably th
low computer precision for the Newton method to follo
single-well breather solution with the initial~or final, for t
5p/vb) central particle displacement at the top of the p
tential barrier between two neighbor wells. Some modifi
tion of computational technique is required to answer

FIG. 8. The dependence of localization parametersz1,2 on the
breather frequencyvb .
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question of existence of discrete breather solutions in
low-frequency region. Most probably, the answer is negati
because the abrupt decrease of the step in coupling param
C has been observed in our simulations already forC
50.1/0.2 for all nonresonant low frequencies. Remarkab
that at this failure of the Newton method the isolated Floq
eigenvalue corresponding to localized mode is located at
unit circle and has the phase of about 0.2, so it is not the c
of bifurcation associated with a collision at11.

FIG. 9. Phonon-breather solution forvb50.56 ~a! and its sta-
bility analysis~b,c!.
4-7
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As a result of a finite precision of calculations, the so
tions other than low-frequency single-well discrete breat
solutions~double-frequency single-well solutions, solutio
with the central particle being trapped in the secondary
tential well or performing large-amplitude two-well oscilla
tions! could have been found forC51 depending on the sign
of the central particle initial displacement atC50. The ob-
tained double-well solutions are beyond of the scope of
present paper and can be a subject for more detailed fu
investigations.

B. Multibreather solutions

Two kinds of two-site breather solutions were obtained
the frequency range 0.565<vb<0.85. The in-phase two-sit
discrete breather solution originating from the coding
quence (. . . ,0,0,1,1,0,0, . . . ) @45# and shown in Fig. 11~a!
was found to exist and to be unstable for all the frequenc
from this range. The stability analysis@see Fig. 11~b!# shows

FIG. 10. ~a!The maximum positive displacements of the cent
particles of one-site~squares!, two-site in-phase~circles!, and two-
site out-of-phase~triangles! breather as a function of breather fr
quencyvb . For the two-site breathers the open symbols show
displacement of the left central particle, and the filled ones stand
the right particle displacement.~b! The frequency dependence o
the energy of one-site~squares!, two-site in-phase~circles!, and
two-site out-of-phase~triangles! breather. Attention should be pai
to the semilogarithmic scale.
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that the main instability comes from the pair of Floquet
genvalues moving on the real axis from11 ~we don’t report
additional small instabilities forvb,2vmax/3, which have
the same nature as for the one-site discrete breather!. The
bigger Floquet eigenvalue is always real and grows fr
1.00 ~the matter of precision of eigenvalue calculation! at
vb50.85 to 9.12 atvb50.57.

Due to the asymmetry of the interaction potential~4! the
left excited particle of a two-site in-phase breather solut
has a higher oscillation amplitude than the right one. The
fore, the initial profile for this two-site breather has a ma
mum at only one of the chain sites, as in the case of
one-site solution. The only difference is that the amplitude
the right~this time excited! neighbor to the central particle i
higher than the amplitude of the left~nonexcited! one. The
frequency dependence of initial displacements for the t
central particles and of the breather energy are shown
Figs. 10~a! and 10~b!, respectively.

The two-site out-of-phase breather solutions with ori
nating coding sequence (. . . ,0,0,21,1,0,0, . . . ) were found
to exist at C51 only in the frequency range 0.57<vb
<0.6385 ~at higher frequencies the solution could not
continued toC51 because of the collision with localize
mode at11!. The form of the solution and its stability analy

l

e
or

FIG. 11. A two-site in-phase discrete breather solution~a! and
its stability analysis~b! for vb50.76.
4-8
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ORIENTATIONAL DISCRETE BREATHERS IN . . . PHYSICAL REVIEW E65 046604
sis are represented at Figs. 12~a!–~c!. The solution is un-
stable forC51 for all frequencies it exists, the largest Fl
quet eigenvalue ranging from 4.29 atvb50.6385 to 39.30 at
vb50.57. But this solution can be stable at the small val
of the coupling parameterC, as it is illustrated by Fig.12c
~cf. the stability of out-of-phase two-site breather in Klei
Gordon chain with the soft potential@39# and instability of
antisymmetric mode centered on heavy particle forb-FPU

FIG. 12. A two-site out-of-phase discrete breather solution~a!
and its stability analysis~b,c! for vb50.60.
04660
s

chain @43#!. The initial profile for this breather has no defi
nite symmetry. Nor the maximum positive displacements
two central particles have definite ratio. Both the maximu
displacements are depicted in Fig. 10~a!. The energy of this
breather@depicted in Fig. 10~b!# is larger than the energy o
in-phase two-site breather.

V. SUMMARY AND OUTLOOK

In this paper we have investigated the rotational motion
molecules in a zig-zag hydrogen-bonded chain. Using
numerically exact procedure, we have obtained single-w
orientational discrete breather solutions starting from the
ticontinuum limit.

The one-component system considered is characterize
nonlinear on-site potential and nonlinear interaction ter
dependent not only on the difference (un112un), but also on
both angles. Although this system cannot be restricted to
pure case of Klein-Gordon or Fermi-Pasta-Ulam chain
reveals the features of both. Therefore, we were urged to
a proper modification of the two corresponding ways of
troducing the anticontinuum limit into the system Ham
tonian.

The system admits discrete breather solutions with
frequencies in the gap between the phonon band and
region of 1:2 resonance. These solutions bifurcate from
lower edge of the phonon band and have asymmetric pro
due to the more general character of interaction poten
They are stable down to the breather frequencies entering
parametric 2:3 resonance region. A presence of two local
tion lengths is clearly seen for discrete breather soluti
with the second harmonics close to the upper edge of
phonon band. Delocalization of the second harmonics n
the upper edge of 1:2 resonance region gives rise to pho
breather solutions obtained in that resonance region.

Both in-phase and out-of-phase two-site discrete brea
solutions are found to have no symmetry and to be unsta
for all the frequencies the breathers exist. The region of
phase breathers existence coincides with the region of e
tence of single-site breather solutions, while out-of-pha
breathers could be continued up to the couplingC51 ~our
realistic system! only for frequencies close to 1:2 resonan
region.

The single-well discrete breather solutions with the s
ond harmonics below the phonon band have not been
tained in this study because of the numerical failure of
Newton method. Some modification of computational tec
nique is required to consider low-frequency periodic so
tions with the trajectories of central particles close to the
of the interwell potential barrier. A detailed study of discre
breather solutions with two-well central particle oscillation
which can be compared to the results for the Klein-Gord
chain with double-well on-site potential@41,42#, as well as of
multiwell rotobreather solutions, would be a promising to
ics for future investigations.

As a final remark, we have to note that all the results
existence and stability properties of one- and two-site d
crete breathers reported in the present paper have been
tained using the specific parameter values of ice. For
4-9



ht
o
th

th

nd
the
ra-

er

JULIA M. KHALACK AND M. J. VELGAKIS PHYSICAL REVIEW E 65 046604
materials with other parameter values~our model is sensible
to zig-zag angle 2a, reduced covalent bond lengthr, and
reduced on-site dipole rotation barrier heig
4pe0RUB

(0)/q2) the linear phonon spectrum may admit n
discrete breather solutions with the frequencies below
band, or the stability properties of some discrete brea
solutions may be reversed.
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